Wang, Y., Borgatta, J. & White, J. C. Protecting meals with biopolymer fibres. Nat. Food 3, 402–403 (2022).
Snyder, A. B., Martin, N. & Wiedmann, M. Microbial food spoilage: impression, causative brokers and management methods. Nat. Rev. Microbiol. 22, 528–542 (2024).
Sanders, T. A. B. Food manufacturing and food security. BMJ 318, 1689–1693 (1999).
Camino Feltes, M. M., Arisseto-Bragotto, A. P. & Block, J. M. Food high quality, food-borne illnesses, and food security in the Brazilian food business. Food Qual. Saf. 1, 13–27 (2017).
Smith, J. L. & Fratamico, P. M. Emerging and re-emerging foodborne pathogens. Foodborne Pathog. Dis. 15, 737–757 (2018).
Bélanger, P., Tanguay, F., Hamel, M. & Phypers, M. An overview of foodborne outbreaks in Canada reported via Outbreak Summaries: 2008–2014. Can. Commun. Dis. Rep. 41, 254–262 (2015).
Crippa, M. et al. Food techniques are accountable for a 3rd of worldwide anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).
Sarno, E., Pezzutto, D., Rossi, M., Liebana, E. & Rizzi, V. A evaluation of great European foodborne outbreaks in the final decade. J. Food Prot. 84, 2059–2070 (2021).
Beltran-Alcrudo, D., Falco, J. R., Raizman, E. & Dietze, Ok. Transboundary unfold of pig illnesses: the function of worldwide commerce and journey. BMC Vet. Res. 15, 64 (2019).
Vandeweyer, D., Lievens, B. & Campenhout, L. V. Identification of bacterial endospores and focused detection of foodborne viruses in industrially reared bugs for food. Nat. Food 1, 511–516 (2020).
Villalonga, A., Sánchez, A., Mayol, B., Reviejo, J. & Villalonga, R. Electrochemical biosensors for food bioprocess monitoring. Curr. Opin. Food Sci. 43, 18–26 (2022).
Nahar, S., Mizan, M. F. R., Ha, A. J.-W. & Ha, S.-D. Advances and future prospects of enzyme-based biofilm prevention approaches in the food business. Compr. Rev. Food Sci. Food Saf. 17, 1484–1502 (2018).
Bhanja, A., Nanda, R. & Mishra, M. in Bio- and Nano-sensing Technologies for Food Processing and Packaging (ed. Shukla, A. Ok.) 181–198 (Royal Society of Chemistry, 2022); https://doi.org/10.1039/9781839167966
Peters, R. J. B. et al. Nanomaterials for merchandise and software in agriculture, feed and food. Trends Food Sci. Technol. 54, 155–164 (2016).
Dey, A., Pandey, G. & Rawtani, D. Functionalized nanomaterials pushed antimicrobial food packaging: a technological development in food science. Food Control 131, 108469 (2022).
Chen, H. et al. Nanomaterials as optical sensors for software in fast detection of food contaminants, high quality and authenticity. Sens. Actuators B 329, 129135 (2021).
Mundaca-Uribe, R., Askarinam, N., Fang, R. H., Zhang, L. & Wang, J. Towards multifunctional robotic capsules. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01090-6 (2023).
Nelson, B. J. & Pané, S. Delivering medicine with microrobots. Science 382, 1120–1122 (2023).
Fernández-Medina, M., Ramos-Docampo, M. A., Hovorka, O., Salgueiriño, V. & Städler, B. Recent advances in nano- and microrobots. Adv. Funct. Mater. 30, 1908283 (2020).
Allard, C. Adaptable navigation of magnetic microrobots. Nat. Rev. Mater. 9, 90 (2024).
Hu, Y., Liu, W. & Sun, Y. Self-propelled micro-/nanorobots as ‘on-the-move’ platforms: cleaners, sensors, and reactors. Adv. Funct. Mater. 32, 2109181 (2022).
Wang, T., Wu, Y., Yildiz, E., Kanyas, S. & Sitti, M. Clinical translation of wi-fi delicate robotic medical gadgets. Nat. Rev. Bioeng. 2, 470–485 (2024).
Yuan, Ok., Jiang, Z., Jurado-Sánchez, B. & Escarpa, A. Nano/micro-robots for analysis and remedy of most cancers and infectious illnesses. Chem. Eur. J. 26, 2309–2326 (2020).
Esteban-Fernández de Ávila, B. et al. Microrobots go in vivo: from take a look at tubes to reside animals. Adv. Funct. Mater. 28, 1705640 (2018).
Urso, M., Ussia, M. & Pumera, M. Smart micro- and nanorobots for water purification. Nat. Rev. Bioeng. 1, 236–251 (2023).
Ge, H., Chen, X., Liu, W., Lu, X. & Gu, Z. Metal-based transient microrobots: from precept to environmental and biomedical purposes. Chem. Asian J. 14, 2348–2356 (2019).
Dan, J. et al. Micro/nanorobot technology: the brand new period for food security management. Crit. Rev. Food Sci. Nutr. 64, 2032–2052 (2024).
Wang, Q. & Zhang, L. External power-driven microrobotic swarm: from basic understanding to imaging-guided supply. ACS Nano. 15, 149–174 (2021).
Wang, H. & Pumera, M. Coordinated behaviors of synthetic micro/nanomachines: from mutual interactions to interactions with the setting. Chem. Soc. Rev. 49, 3211–3230 (2020).
Singh, V. V., Kaufmann, Ok., de Ávila, B. E.-F., Karshalev, E. & Wang, J. Molybdenum disulfide-based tubular microengines: towards biomedical purposes. Adv. Funct. Mater. 26, 6270–6278 (2016).
Kim, J., Mayorga-Martinez, C. C. & Pumera, M. Magnetically boosted 1D photoactive microswarm for COVID-19 face masks disruption. Nat. Commun. 14, 935 (2023).
Chen, C., Karshalev, E., Guan, J. & Wang, J. Magnesium-based micromotors: water-powered propulsion, multifunctionality, and biomedical and environmental purposes. Small 14, 1704252 (2018).
Zhou, H., Mayorga-Martinez, C. C., Pané, S., Zhang, L. & Pumera, M. Magnetically pushed micro and nanorobots. Chem. Rev. 121, 4999–5041 (2021).
Chen, X.-Z. et al. Recent developments in magnetically pushed micro- and nanorobots. Appl. Mater. Today 9, 37–48 (2017).
Li, J. C. C., Mayorga-Martinez, C.-D., Ohl, M. & Pumera, M. Ultrasonically propelled micro- and nanorobots. Adv. Funct. Mater. 32, 2102265 (2022).
Chen, C., Soto, F., Karshalev, E., Li, J. & Wang, J. Hybrid nanovehicles: one machine, two engines. Adv. Funct. Mater. 29, 1806290 (2018).
Ussia, M. et al. Magnetically pushed self-degrading zinc-containing cystine microrobots for remedy of prostate most cancers. Small 19, 2208259 (2023).
Song, S.-J. et al. Precisely navigated biobot swarms of micro organism Magnetospirillum magneticum for water decontamination. ACS Appl. Mater. Interfaces 15, 7023–7029 (2023).
Mayorga-Martinez, C. C., Fojtů, M., Vyskočil, J., Cho, N.-J. & Pumera, M. Pollen-based magnetic microrobots are mediated by electrostatic forces to draw, manipulate, and kill most cancers cells. Adv. Funct. Mater. 32, 2207272 (2022).
Kim, J. et al. Advanced supplies for micro/nanorobotics. Chem. Soc. Rev. 53, 9190–9253 (2024).
Ussia, M. & Pumera, M. Towards micromachine intelligence: potential of polymers. Chem. Soc. Rev. 51, 1558–1572 (2022).
Yang, Ok., Won, S., Park, J. E., Jeon, J. & Wie, J. J. Magnetic swarm intelligence of mass-produced, programmable microrobot assemblies for versatile activity execution. Device 3, 100626 (2025).
Wang, J. Self-propelled affinity biosensors: transferring the receptor across the pattern. Biosens. Bioelectron. 76, 234–242 (2016).
Dai, B. et al. Fluid area modulation in mass switch for environment friendly photocatalysis. Adv. Sci. 9, 2203057 (2022).
Xiong, Ok. et al. An axis-asymmetric self-driven microrobot that may carry out precession multiplying ‘on-the-fly’ mass switch. Matter 6, 907–924 (2023).
Karshalev, E., Esteban-Fernández de Ávila, B. & Wang, J. Microrobots for ‘chemistry-on-the-fly’. J. Am. Chem. Soc. 140, 3810–3820 (2018).
Rojas, D., Jurado-Sanchez, B. & Escarpa, A. ‘Shoot and sense’ Janus microrobots-based technique for the simultaneous degradation and detection of persistent natural pollution in food and organic samples. Anal. Chem. 88, 4153–4160 (2016).
Kong, L., Guan, J. & Pumera, M. Micro- and nanorobots based mostly sensing and biosensing. Curr. Opin. Electrochem. 10, 174–182 (2018).
Luo, Y. et al. MnFe2O4 microrobots enhanced area digestion and stable section extraction for on-site willpower of arsenic in rice and water. Anal. Chim. Acta 1156, 338354 (2021).
Toh, S. Y., Citartan, M., Gopinath, S. C. B. & Tang, T.-H. Aptamers as a alternative for antibodies in enzyme-linked immunosorbent assay. Biosens. Bioelectron. 64, 392–403 (2015).
Esteban-Fernandez de Avila, B. et al. Aptamer-modified graphene-based catalytic microrobots: off−on fluorescent detection of ricin. ACS Sens. 1, 217–221 (2016).
Molinero-Fernandez, A., Jodra, A., Moreno-Guzman, M., Lopez, M. A. & Escarpa, A. Magnetic diminished graphene oxide/nickel/platinum nanoparticles microrobots for mycotoxin evaluation. Chem. Eur. J. 24, 7172–7176 (2018).
Maria-Hormigos, R., Jurado-Sanchez, B. & Escarpa, A. Carbon allotrope nanomaterials based mostly catalytic microrobots. Chem. Mater. 28, 8962–8970 (2016).
Molinero-Fernandez, A., Moreno-Guzman, M., Lopez, M. A. & Escarpa, A. Biosensing technique for simultaneous and correct quantitative evaluation of mycotoxins in food samples utilizing unmodified graphene microrobots. Anal. Chem. 89, 10850–10857 (2017).
Wen, J., Xu, Y., Li, H., Lu, A. & Sun, S. Recent purposes of carbon nanomaterials in fluorescence biosensing and bioimaging. Chem. Commun. 51, 11346–11358 (2015).
Jurado-Sánchez, B., Pacheco, M., Rojo, J. & Escarpa, A. Magnetocatalytic graphene quantum dots Janus microrobots for bacterial endotoxin detection. Angew. Chem. Int. Ed. 56, 6957–6961 (2017).
Pacheco, M., Jurado-Sánchez, B. & Escarpa, A. Sensitive monitoring of enterobacterial contamination of food utilizing self-propelled Janus microsensors. Anal. Chem. 90, 2912–2917 (2018).
Su, W. & Ding, X. Methods of endotoxin detection. J. Lab. Autom. 20, 354–364 (2015).
Sorbo, A. et al. Food security evaluation: overview of metrological points and regulatory elements in the European Union. Separations 9, 53 (2022).
Romero-González, R. Food security: how analytical chemists guarantee it. Anal. Methods 7, 7193–7201 (2015).
Singh, V. V. et al. Micromotor-based on–off fluorescence detection of sarin and soman simulants. Chem. Commun. 51, 11190–111903 (2015).
Zhang, Y. et al. Real-time monitoring of fluorescent magnetic spore-based microrobots for distant detection of C. diff toxins. Sci. Adv. 5, eaau9650 (2019).
Yuan, Ok., López, M. Á, Jurado-Sánchez, B. & Escarpa, A. Janus micromotors coated with second nanomaterials as dynamic interfaces for (bio)-sensing. ACS Appl. Mater. Interfaces 12, 46588–46597 (2020).
Mayorga-Martinez, C. C. & Pumera, M. Self-propelled tags for protein detection. Adv. Funct. Mater. 30, 1906449 (2020).
Turgis, M., Vu, Ok. D., Dupont, C. & Lacroix, M. Combined antimicrobial impact of important oils and bacteriocins in opposition to foodborne pathogens and food spoilage micro organism. Food Res. Int. 48, 696–702 (2012).
Heymich, M.-L. et al. Generation of antimicrobial peptides Leg1 and Leg2 from chickpea storage protein, lively in opposition to food spoilage micro organism and foodborne pathogens. Food Chem. 347, 128917 (2021).
Fidan, H. et al. Recent developments of lactic acid micro organism and their metabolites on foodborne pathogens and spoilage micro organism: information and gaps. Food Biosci. 47, 101741 (2022).
Yuan, Ok., Jurado-Sánchez, B. & Escarpa, A. Dual-propelled lanbiotic based mostly Janus microrobots for selective inactivation of micro organism biofilms. Angew. Chem. Int. Ed. 60, 4915–4924 (2021).
Mayorga-Martinez, C. C., Castoralova, M., Zelenka, J., Ruml, T. & Pumera, M. Swarming magnetic microrobots for pathogen isolation from milk. Small https://doi.org/10.1002/smll.202205047 (2023).
Sun, F., Yao, M., Su, H., Yang, Q. & Wu, W. A magnetic fluorescent spirochetes microrobot: dynamic monitoring and in situ sterilization of foodborne pathogens. Sens. Actuators B. 385, 133679 (2023).
Villa, Ok., Vyskočil, J., Ying, Y., Zelenka, J. & Pumera, M. Microrobots in brewery: twin magnetic/light-powered hybrid microrobots for stopping microbial contamination in beer. Chem. Eur. J. 26, 3039–3043 (2020).
Herrador, Z., Gherasim, A., López-Vélez, R. & Benito, A. Listeriosis in Spain based mostly on hospitalisation information, 1997 to 2015: want for higher consciousness. Eur. Surveill. 24, 1800271 (2019).
Alonso, V. A. et al. Fungi and mycotoxins in silage: an summary. J. Appl. Microbiol. 115, 637–643 (2013).
Suiker, I. M. & Wösten, H. A. B. Spoilage yeasts in beer and beer merchandise. Curr. Opin. Food Sci. 44, 100815 (2022).
Srivastava, S. Ok. & Schmidt, O. G. Autonomously propelled robots for value-added product synthesis and purification. Chem. Eur. J. 22, 9072–9076 (2016).
Maria-Hormigos, R., Jurado-Sánchez, B. & Escarpa, A. Surfactant-free β-galactosidase microrobots for ‘on-the-move’ lactose hydrolysis. Adv. Funct. Mater. 28, 1704256 (2018).
Mou, F. et al. Self-propelled microrobots pushed by the magnesium–water response and their hemolytic properties. Angew. Chem. Int. Ed. 52, 7208–7212 (2013).
Wu, M., Koizumi, Y., Nishiyama, H., Tomita, I. & Inagi, S. Buoyant force-induced steady floating and sinking of Janus microrobots. RSC Adv. 8, 33331–33337 (2018).
Maria-Hormigos, R., Mayorga-Martinez, C. C., Kinčl, T. & Pumera, M. Nanostructured hybrid BioBots for beer brewing. ACS Nano 17, 7595–7603 (2023).
Dabbagh, S. R. et al. 3D-printed microrobots from design to translation. Nat. Commun. 13, 5875 (2022).
Sharan, P., Nsamela, A., Lesher-Pérez, S. C. & Simmchen, J. Microfluidics for microswimmers: engineering novel swimmers and establishing swimming lanes on the microscale, a tutorial evaluation. Small 17, 2007403 (2021).
Ju, X. et al. Technology roadmap of micro/nanorobots. ACS Nano https://doi.org/10.1021/acsnano.5c03911 (2025).
Abbasi, S. A., et al. Autonomous 3D positional management of a magnetic microrobot utilizing reinforcement studying. Nat. Mach. Intell. 6, 92–105 (2024).