• Wang, Y., Borgatta, J. & White, J. C. Protecting meals with biopolymer fibres. Nat. Food 3, 402–403 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Snyder, A. B., Martin, N. & Wiedmann, M. Microbial food spoilage: impression, causative brokers and management methods. Nat. Rev. Microbiol. 22, 528–542 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanders, T. A. B. Food manufacturing and food security. BMJ 318, 1689–1693 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camino Feltes, M. M., Arisseto-Bragotto, A. P. & Block, J. M. Food high quality, food-borne illnesses, and food security in the Brazilian food business. Food Qual. Saf. 1, 13–27 (2017).

    Article 

    Google Scholar
     

  • Smith, J. L. & Fratamico, P. M. Emerging and re-emerging foodborne pathogens. Foodborne Pathog. Dis. 15, 737–757 (2018).

    Article 

    Google Scholar
     

  • Bélanger, P., Tanguay, F., Hamel, M. & Phypers, M. An overview of foodborne outbreaks in Canada reported via Outbreak Summaries: 2008–2014. Can. Commun. Dis. Rep. 41, 254–262 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crippa, M. et al. Food techniques are accountable for a 3rd of worldwide anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarno, E., Pezzutto, D., Rossi, M., Liebana, E. & Rizzi, V. A evaluation of great European foodborne outbreaks in the final decade. J. Food Prot. 84, 2059–2070 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Beltran-Alcrudo, D., Falco, J. R., Raizman, E. & Dietze, Ok. Transboundary unfold of pig illnesses: the function of worldwide commerce and journey. BMC Vet. Res. 15, 64 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vandeweyer, D., Lievens, B. & Campenhout, L. V. Identification of bacterial endospores and focused detection of foodborne viruses in industrially reared bugs for food. Nat. Food 1, 511–516 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Villalonga, A., Sánchez, A., Mayol, B., Reviejo, J. & Villalonga, R. Electrochemical biosensors for food bioprocess monitoring. Curr. Opin. Food Sci. 43, 18–26 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Nahar, S., Mizan, M. F. R., Ha, A. J.-W. & Ha, S.-D. Advances and future prospects of enzyme-based biofilm prevention approaches in the food business. Compr. Rev. Food Sci. Food Saf. 17, 1484–1502 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Bhanja, A., Nanda, R. & Mishra, M. in Bio- and Nano-sensing Technologies for Food Processing and Packaging (ed. Shukla, A. Ok.) 181–198 (Royal Society of Chemistry, 2022); https://doi.org/10.1039/9781839167966

  • Peters, R. J. B. et al. Nanomaterials for merchandise and software in agriculture, feed and food. Trends Food Sci. Technol. 54, 155–164 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Dey, A., Pandey, G. & Rawtani, D. Functionalized nanomaterials pushed antimicrobial food packaging: a technological development in food science. Food Control 131, 108469 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H. et al. Nanomaterials as optical sensors for software in fast detection of food contaminants, high quality and authenticity. Sens. Actuators B 329, 129135 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mundaca-Uribe, R., Askarinam, N., Fang, R. H., Zhang, L. & Wang, J. Towards multifunctional robotic capsules. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01090-6 (2023).

  • Nelson, B. J. & Pané, S. Delivering medicine with microrobots. Science 382, 1120–1122 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernández-Medina, M., Ramos-Docampo, M. A., Hovorka, O., Salgueiriño, V. & Städler, B. Recent advances in nano- and microrobots. Adv. Funct. Mater. 30, 1908283 (2020).

    Article 

    Google Scholar
     

  • Allard, C. Adaptable navigation of magnetic microrobots. Nat. Rev. Mater. 9, 90 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Hu, Y., Liu, W. & Sun, Y. Self-propelled micro-/nanorobots as ‘on-the-move’ platforms: cleaners, sensors, and reactors. Adv. Funct. Mater. 32, 2109181 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, T., Wu, Y., Yildiz, E., Kanyas, S. & Sitti, M. Clinical translation of wi-fi delicate robotic medical gadgets. Nat. Rev. Bioeng. 2, 470–485 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, Ok., Jiang, Z., Jurado-Sánchez, B. & Escarpa, A. Nano/micro-robots for analysis and remedy of most cancers and infectious illnesses. Chem. Eur. J. 26, 2309–2326 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esteban-Fernández de Ávila, B. et al. Microrobots go in vivo: from take a look at tubes to reside animals. Adv. Funct. Mater. 28, 1705640 (2018).

    Article 

    Google Scholar
     

  • Urso, M., Ussia, M. & Pumera, M. Smart micro- and nanorobots for water purification. Nat. Rev. Bioeng. 1, 236–251 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge, H., Chen, X., Liu, W., Lu, X. & Gu, Z. Metal-based transient microrobots: from precept to environmental and biomedical purposes. Chem. Asian J. 14, 2348–2356 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dan, J. et al. Micro/nanorobot technology: the brand new period for food security management. Crit. Rev. Food Sci. Nutr. 64, 2032–2052 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q. & Zhang, L. External power-driven microrobotic swarm: from basic understanding to imaging-guided supply. ACS Nano. 15, 149–174 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. & Pumera, M. Coordinated behaviors of synthetic micro/nanomachines: from mutual interactions to interactions with the setting. Chem. Soc. Rev. 49, 3211–3230 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Singh, V. V., Kaufmann, Ok., de Ávila, B. E.-F., Karshalev, E. & Wang, J. Molybdenum disulfide-based tubular microengines: towards biomedical purposes. Adv. Funct. Mater. 26, 6270–6278 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J., Mayorga-Martinez, C. C. & Pumera, M. Magnetically boosted 1D photoactive microswarm for COVID-19 face masks disruption. Nat. Commun. 14, 935 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C., Karshalev, E., Guan, J. & Wang, J. Magnesium-based micromotors: water-powered propulsion, multifunctionality, and biomedical and environmental purposes. Small 14, 1704252 (2018).

    Article 

    Google Scholar
     

  • Zhou, H., Mayorga-Martinez, C. C., Pané, S., Zhang, L. & Pumera, M. Magnetically pushed micro and nanorobots. Chem. Rev. 121, 4999–5041 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X.-Z. et al. Recent developments in magnetically pushed micro- and nanorobots. Appl. Mater. Today 9, 37–48 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Li, J. C. C., Mayorga-Martinez, C.-D., Ohl, M. & Pumera, M. Ultrasonically propelled micro- and nanorobots. Adv. Funct. Mater. 32, 2102265 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, C., Soto, F., Karshalev, E., Li, J. & Wang, J. Hybrid nanovehicles: one machine, two engines. Adv. Funct. Mater. 29, 1806290 (2018).

    Article 

    Google Scholar
     

  • Ussia, M. et al. Magnetically pushed self-degrading zinc-containing cystine microrobots for remedy of prostate most cancers. Small 19, 2208259 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Song, S.-J. et al. Precisely navigated biobot swarms of micro organism Magnetospirillum magneticum for water decontamination. ACS Appl. Mater. Interfaces 15, 7023–7029 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayorga-Martinez, C. C., Fojtů, M., Vyskočil, J., Cho, N.-J. & Pumera, M. Pollen-based magnetic microrobots are mediated by electrostatic forces to draw, manipulate, and kill most cancers cells. Adv. Funct. Mater. 32, 2207272 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. et al. Advanced supplies for micro/nanorobotics. Chem. Soc. Rev. 53, 9190–9253 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ussia, M. & Pumera, M. Towards micromachine intelligence: potential of polymers. Chem. Soc. Rev. 51, 1558–1572 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Ok., Won, S., Park, J. E., Jeon, J. & Wie, J. J. Magnetic swarm intelligence of mass-produced, programmable microrobot assemblies for versatile activity execution. Device 3, 100626 (2025).

    Article 

    Google Scholar
     

  • Wang, J. Self-propelled affinity biosensors: transferring the receptor across the pattern. Biosens. Bioelectron. 76, 234–242 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, B. et al. Fluid area modulation in mass switch for environment friendly photocatalysis. Adv. Sci. 9, 2203057 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xiong, Ok. et al. An axis-asymmetric self-driven microrobot that may carry out precession multiplying ‘on-the-fly’ mass switch. Matter 6, 907–924 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Karshalev, E., Esteban-Fernández de Ávila, B. & Wang, J. Microrobots for ‘chemistry-on-the-fly’. J. Am. Chem. Soc. 140, 3810–3820 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rojas, D., Jurado-Sanchez, B. & Escarpa, A. ‘Shoot and sense’ Janus microrobots-based technique for the simultaneous degradation and detection of persistent natural pollution in food and organic samples. Anal. Chem. 88, 4153–4160 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kong, L., Guan, J. & Pumera, M. Micro- and nanorobots based mostly sensing and biosensing. Curr. Opin. Electrochem. 10, 174–182 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Luo, Y. et al. MnFe2O4 microrobots enhanced area digestion and stable section extraction for on-site willpower of arsenic in rice and water. Anal. Chim. Acta 1156, 338354 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Toh, S. Y., Citartan, M., Gopinath, S. C. B. & Tang, T.-H. Aptamers as a alternative for antibodies in enzyme-linked immunosorbent assay. Biosens. Bioelectron. 64, 392–403 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esteban-Fernandez de Avila, B. et al. Aptamer-modified graphene-based catalytic microrobots: off−on fluorescent detection of ricin. ACS Sens. 1, 217–221 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Molinero-Fernandez, A., Jodra, A., Moreno-Guzman, M., Lopez, M. A. & Escarpa, A. Magnetic diminished graphene oxide/nickel/platinum nanoparticles microrobots for mycotoxin evaluation. Chem. Eur. J. 24, 7172–7176 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maria-Hormigos, R., Jurado-Sanchez, B. & Escarpa, A. Carbon allotrope nanomaterials based mostly catalytic microrobots. Chem. Mater. 28, 8962–8970 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Molinero-Fernandez, A., Moreno-Guzman, M., Lopez, M. A. & Escarpa, A. Biosensing technique for simultaneous and correct quantitative evaluation of mycotoxins in food samples utilizing unmodified graphene microrobots. Anal. Chem. 89, 10850–10857 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen, J., Xu, Y., Li, H., Lu, A. & Sun, S. Recent purposes of carbon nanomaterials in fluorescence biosensing and bioimaging. Chem. Commun. 51, 11346–11358 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Jurado-Sánchez, B., Pacheco, M., Rojo, J. & Escarpa, A. Magnetocatalytic graphene quantum dots Janus microrobots for bacterial endotoxin detection. Angew. Chem. Int. Ed. 56, 6957–6961 (2017).

    Article 

    Google Scholar
     

  • Pacheco, M., Jurado-Sánchez, B. & Escarpa, A. Sensitive monitoring of enterobacterial contamination of food utilizing self-propelled Janus microsensors. Anal. Chem. 90, 2912–2917 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Su, W. & Ding, X. Methods of endotoxin detection. J. Lab. Autom. 20, 354–364 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sorbo, A. et al. Food security evaluation: overview of metrological points and regulatory elements in the European Union. Separations 9, 53 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Romero-González, R. Food security: how analytical chemists guarantee it. Anal. Methods 7, 7193–7201 (2015).

    Article 

    Google Scholar
     

  • Singh, V. V. et al. Micromotor-based on–off fluorescence detection of sarin and soman simulants. Chem. Commun. 51, 11190–111903 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Real-time monitoring of fluorescent magnetic spore-based microrobots for distant detection of C. diff toxins. Sci. Adv. 5, eaau9650 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, Ok., López, M. Á, Jurado-Sánchez, B. & Escarpa, A. Janus micromotors coated with second nanomaterials as dynamic interfaces for (bio)-sensing. ACS Appl. Mater. Interfaces 12, 46588–46597 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mayorga-Martinez, C. C. & Pumera, M. Self-propelled tags for protein detection. Adv. Funct. Mater. 30, 1906449 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Turgis, M., Vu, Ok. D., Dupont, C. & Lacroix, M. Combined antimicrobial impact of important oils and bacteriocins in opposition to foodborne pathogens and food spoilage micro organism. Food Res. Int. 48, 696–702 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Heymich, M.-L. et al. Generation of antimicrobial peptides Leg1 and Leg2 from chickpea storage protein, lively in opposition to food spoilage micro organism and foodborne pathogens. Food Chem. 347, 128917 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fidan, H. et al. Recent developments of lactic acid micro organism and their metabolites on foodborne pathogens and spoilage micro organism: information and gaps. Food Biosci. 47, 101741 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, Ok., Jurado-Sánchez, B. & Escarpa, A. Dual-propelled lanbiotic based mostly Janus microrobots for selective inactivation of micro organism biofilms. Angew. Chem. Int. Ed. 60, 4915–4924 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mayorga-Martinez, C. C., Castoralova, M., Zelenka, J., Ruml, T. & Pumera, M. Swarming magnetic microrobots for pathogen isolation from milk. Small https://doi.org/10.1002/smll.202205047 (2023).

  • Sun, F., Yao, M., Su, H., Yang, Q. & Wu, W. A magnetic fluorescent spirochetes microrobot: dynamic monitoring and in situ sterilization of foodborne pathogens. Sens. Actuators B. 385, 133679 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Villa, Ok., Vyskočil, J., Ying, Y., Zelenka, J. & Pumera, M. Microrobots in brewery: twin magnetic/light-powered hybrid microrobots for stopping microbial contamination in beer. Chem. Eur. J. 26, 3039–3043 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herrador, Z., Gherasim, A., López-Vélez, R. & Benito, A. Listeriosis in Spain based mostly on hospitalisation information, 1997 to 2015: want for higher consciousness. Eur. Surveill. 24, 1800271 (2019).

    Article 

    Google Scholar
     

  • Alonso, V. A. et al. Fungi and mycotoxins in silage: an summary. J. Appl. Microbiol. 115, 637–643 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suiker, I. M. & Wösten, H. A. B. Spoilage yeasts in beer and beer merchandise. Curr. Opin. Food Sci. 44, 100815 (2022).

    Article 

    Google Scholar
     

  • Srivastava, S. Ok. & Schmidt, O. G. Autonomously propelled robots for value-added product synthesis and purification. Chem. Eur. J. 22, 9072–9076 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maria-Hormigos, R., Jurado-Sánchez, B. & Escarpa, A. Surfactant-free β-galactosidase microrobots for ‘on-the-move’ lactose hydrolysis. Adv. Funct. Mater. 28, 1704256 (2018).

    Article 

    Google Scholar
     

  • Mou, F. et al. Self-propelled microrobots pushed by the magnesium–water response and their hemolytic properties. Angew. Chem. Int. Ed. 52, 7208–7212 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wu, M., Koizumi, Y., Nishiyama, H., Tomita, I. & Inagi, S. Buoyant force-induced steady floating and sinking of Janus microrobots. RSC Adv. 8, 33331–33337 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maria-Hormigos, R., Mayorga-Martinez, C. C., Kinčl, T. & Pumera, M. Nanostructured hybrid BioBots for beer brewing. ACS Nano 17, 7595–7603 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dabbagh, S. R. et al. 3D-printed microrobots from design to translation. Nat. Commun. 13, 5875 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharan, P., Nsamela, A., Lesher-Pérez, S. C. & Simmchen, J. Microfluidics for microswimmers: engineering novel swimmers and establishing swimming lanes on the microscale, a tutorial evaluation. Small 17, 2007403 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ju, X. et al. Technology roadmap of micro/nanorobots. ACS Nano https://doi.org/10.1021/acsnano.5c03911 (2025).

  • Abbasi, S. A., et al. Autonomous 3D positional management of a magnetic microrobot utilizing reinforcement studying. Nat. Mach. Intell. 6, 92–105 (2024).

    Article 

    Google Scholar
     



  • Sources